Multiple Instance Learning for Computer Aided Diagnosis
نویسندگان
چکیده
Many computer aided diagnosis (CAD) problems can be best modelled as a multiple-instance learning (MIL) problem with unbalanced data: i.e. , the training data typically consists of a few positive bags, and a very large number of negative instances. Existing MIL algorithms are much too computationally expensive for these datasets. We describe CH, a framework for learning a Convex Hull representation of multiple instances that is significantly faster than existing MIL algorithms. Our CH framework applies to any standard hyperplane-based learning algorithm, and for some algorithms, is guaranteed to find the global optimal solution. Experimental studies on two different CAD applications further demonstrate that the proposed algorithm significantly improves diagnostic accuracy when compared to both MIL and traditional classifiers. Although not designed for standard MIL problems (which have both positive and negative bags and relatively balanced datasets), comparisons against other MIL methods on benchmark problems also indicate that the proposed method is competitive with the state-of-the-art.
منابع مشابه
Computer-aided diagnosis from weak supervision: A benchmarking study
Supervised machine learning is a powerful tool frequently used in computer-aided diagnosis (CAD) applications. The bottleneck of this technique is its demand for fine grained expert annotations, which are tedious for medical image analysis applications. Furthermore, information is typically localized in diagnostic images, which makes representation of an entire image by a single feature set pro...
متن کاملLabel Stability in Multiple Instance Learning
We address the problem of instance label stability in multiple instance learning (MIL) classifiers. These classifiers are trained only on globally annotated images (bags), but often can provide fine-grained annotations for image pixels or patches (instances). This is interesting for computer aided diagnosis (CAD) and other medical image analysis tasks for which only a coarse labeling is provide...
متن کاملComputer Aided Diagnosis Using Multilevel Image Features on Large-Scale Evaluation
Computer aided diagnosis (CAD) of cancerous anatomical structures via 3D medical images has emerged as an intensively studied research area. In this paper, we present a principled three-tiered image feature learning approach to capture task specific and data-driven class discriminative statistics from an annotated image database. It integrates voxel-, instance-, and database-level feature learn...
متن کاملCancer Detection with Multiple Radiologists via Soft Multiple Instance Logistic Regression and L1 Regularization
This paper deals with the multiple annotation problem in medical application of cancer detection in digital images. The main assumption is that though images are labeled by many experts, the number of images read by the same expert is not large. Thus differing with the existing work on modeling each expert and ground truth simultaneously, the multi annotation information is used in a soft manne...
متن کاملA CAD System Framework for the Automatic Diagnosis and Annotation of Histological and Bone Marrow Images
Due to ever increasing of medical images data in the world’s medical centers and recent developments in hardware and technology of medical imaging, necessity of medical data software analysis is needed. Equipping medical science with intelligent tools in diagnosis and treatment of illnesses has resulted in reduction of physicians’ errors and physical and financial damages. In this article we pr...
متن کامل